266 research outputs found

    Unambiguous Tracking Method Based on Combined Correlation Functions for sine/cosine-BOC CBOC and AltBOC Modulated Signals

    Get PDF
    Unambiguous tracking for Binary Offset Carrier (BOC) modulated signals is an important requirement of modern Global Navigation Satellite System (GNSS) receivers. An unambiguous tracking method based on combined correlation functions for even/odd order sine/cosine-BOC, Composite BOC(CBOC) and Alternate BOC(AltBOC) modulated signals is proposed. Firstly, a unitary mathematical formulation for all kinds of BOC modulations is introduced. Then an unambiguous tracking method is proposed based on the formulation and the idea of pseudo correlation function (PCF) method. Finally, the tracking loop based on the proposed method is designed. Simulation results indicate that the proposed method can remove side peaks while retaining the sharp main peak for all kinds of BOC modulations. The tracking performance for AltBOC is examined and the results show that the proposed method has better performance in thermal noise and long-delay multipath mitigation than the traditional unambiguous tracking methods

    Nonfactorizable B→χc0KB\to\chi_{c0}K decay and QCD factorization

    Full text link
    We study the unexpectedly large rate for the factorization-forbidden decay B→χc0KB\to \chi_{c0}K within the QCD factorization approach. We use a non-zero gluon mass to regularize the infrared divergences in vertex corrections. The end-point singularities arising from spectator corrections are regularized and carefully estimated by the off-shellness of quarks. We find that the contributions arising from the vertex and leading-twist spectator corrections are numerically small, and the twist-3 spectator contribution with chiral enhancement and linear end-point singularity becomes dominant. With reasonable choices for the parameters, the branching ratio for B→χc0KB\to\chi_{c0}K decay is estimated to be in the range (2−4)×10−4(2-4)\times 10^{-4}, which is compatible with the Belle and BaBar data.Comment: Appendix added; it is emphasized that in the dominant twist-3 spectator corrections the end-point singularity contributions may be estimated by the off-shellness of the charm quark (by the binding energy in charmonium) and the gluon (by the transverse momentum of the light quark in the kaon

    Chemically dealloyed Fe-based metallic glass with void channels-like architecture for highly enhanced peroxymonosulfate activation in catalysis

    Get PDF
    Metallic glasses (MGs) with their intrinsic disordered atomic structure and widely controllable atomic components have recently emerged as fascinating functional materials in wastewater treatment. Compared to crystalline alloys, the less-noble atomic components in monolithic metallic glass are more efficient to be selectively dissolved during dealloying process. This work reported a facile chemical dealloying approach to fabricate a void channels-like structured MG with the elemental components of Fe73.5Si13.5B9Cu1Nb3 for methylene blue (MB) degradation. Results indicated that the dealloyed Fe73.5Si13.5B9Cu1Nb3 MGs with the void channels-like morphology presented a significant improvement of catalytic efficiency and reusability. The dye degradation reaction rate (kobs) of the dealloyed Fe73.5Si13.5B9Cu1Nb3 MGs presented 3 times higher than their as-spun MGs. More importantly, the dealloyed Fe73.5Si13.5B9Cu1Nb3 MGs can be reused up to 25 times without significantly loosing catalytic efficiency. It was also found that the dealloyed Fe73.5Si13.5B9Cu1Nb3 MGs exhibited a greater corrosion resistance in the simulated dye solution compared to the as-spun ribbons, demonstrating a robust self-healing ability in catalytic activity. This work provides a novel view for designing MG catalysts with high efficiency and stability in worldwide energy and environmental concerns

    \psi(2S) Decays into \J plus Two Photons

    Full text link
    Using \gamma \gamma J/\psi, J/\psi \ra e^+ e^- and μ+μ−\mu^+ \mu^- events from a sample of 14.0×10614.0\times 10^6 \psip decays collected with the BESII detector, the branching fractions for \psip\ra \pi^0\J, \eta\J, and \psi(2S)\ar\gamma\chi_{c1},\gamma\chi_{c2}\ar\gamma\gamma\jpsi are measured to be B(\psip\ra \pi^0\J) = (1.43\pm0.14\pm0.13)\times 10^{-3}, B(\psip\ra \eta\J) = (2.98\pm0.09\pm0.23)%, B(\psi(2S)\ar\gamma\chi_{c1}\ar\gamma\gamma\jpsi) = (2.81\pm0.05\pm 0.23)%, and B(\psi(2S)\ar\gamma\chi_{c2}\ar\gamma\gamma\jpsi) = (1.62\pm0.04\pm 0.12)%.Comment: 7 pages, 6 figures. submitted to Phys. Rev.

    Plasma Wakefield Acceleration with a Modulated Proton Bunch

    Get PDF
    The plasma wakefield amplitudes which could be achieved via the modulation of a long proton bunch are investigated. We find that in the limit of long bunches compared to the plasma wavelength, the strength of the accelerating fields is directly proportional to the number of particles in the drive bunch and inversely proportional to the square of the transverse bunch size. The scaling laws were tested and verified in detailed simulations using parameters of existing proton accelerators, and large electric fields were achieved, reaching 1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found in this case.Comment: 9 pages, 7 figure

    Partonic flow and ϕ\phi-meson production in Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the ϕ\phi-meson elliptic flow (v2(pT)v_{2}(p_{T})) and high statistics pTp_{T} distributions for different centralities from sNN\sqrt{s_{NN}} = 200 GeV Au+Au collisions at RHIC. In minimum bias collisions the v2v_{2} of the ϕ\phi meson is consistent with the trend observed for mesons. The ratio of the yields of the Ω\Omega to those of the ϕ\phi as a function of transverse momentum is consistent with a model based on the recombination of thermal ss quarks up to pT∼4p_{T}\sim 4 GeV/cc, but disagrees at higher momenta. The nuclear modification factor (RCPR_{CP}) of ϕ\phi follows the trend observed in the KS0K^{0}_{S} mesons rather than in Λ\Lambda baryons, supporting baryon-meson scaling. Since ϕ\phi-mesons are made via coalescence of seemingly thermalized ss quarks in central Au+Au collisions, the observations imply hot and dense matter with partonic collectivity has been formed at RHIC.Comment: 6 pages, 4 figures, submit to PR

    Measurement of Transverse Single-Spin Asymmetries for Di-Jet Production in Proton-Proton Collisions at s=200\sqrt{s} = 200 GeV

    Get PDF
    We report the first measurement of the opening angle distribution between pairs of jets produced in high-energy collisions of transversely polarized protons. The measurement probes (Sivers) correlations between the transverse spin orientation of a proton and the transverse momentum directions of its partons. With both beams polarized, the wide pseudorapidity (−1≤η≤+2-1 \leq \eta \leq +2) coverage for jets permits separation of Sivers functions for the valence and sea regions. The resulting asymmetries are all consistent with zero and considerably smaller than Sivers effects observed in semi-inclusive deep inelastic scattering (SIDIS). We discuss theoretical attempts to reconcile the new results with the sizable transverse spin effects seen in SIDIS and forward hadron production in pp collisions.Comment: 6 pages total, 1 Latex file, 3 PS files with figure

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Longitudinal Double-Spin Asymmetry and Cross Section for Inclusive Jet Production in Polarized Proton Collisions at √s = 200 GeV

    Get PDF
    We report a measurement of the longitudinal double-spin asymmetry ALL and the differential cross section for inclusive midrapidity jet production in polarized proton collisions at √s=200  GeV. The cross section data cover transverse momenta
    • …
    corecore